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Downstream evolution of unconfined vortices:
mechanical and thermal aspects
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We present a numerical study of the downstream evolution (mechanical and thermal)
of vortex-jet cores whose velocity and temperature fields far from the axis match a
family of inviscid and non-conducting vortices. The far-velocity field is rotational,
except for a particular case which corresponds to the well-known Long’s vortex. The
evolution of the vortex core depends on both the conditions at a certain upstream
station, characterized by the dimensionless value of the velocity at the axis, and a
dimensionless swirling parameter L defined as the ratio of the values of the azimuthal
and axial velocities outside the vortex core. This numerical study, based on the
quasi-cylindrical approximation (QC) of the Navier–Stokes equations, determines the
conditions under which the vortex evolution proceeds smoothly, eventually reaching
an asymptotic self-similar behaviour as described in the literature (Fernández-Feria,
Fernández de la Mora & Barrero 1995; Herrada, Pérez-Saborid & Barrero 1999),
or breaks in a non-slender solution (vortex breakdown). In particular, the critical
value L = Lb(a) beyond which vortex breakdown occurs downstream is a function
of a dimensionless parameter a characterizing the axial momentum of the vortex
jet at an initial upstream station. It is found numerically that for very large values
of a this vortex breakdown criterion tends to an asymptote which is precisely the
value L = L∗ predicted by the self-similar analysis, and beyond which a self-similar
structure of the vortex core does not exist. In addition, the computation of the total
temperature field provides useful information on the physical mechanisms responsible
for the thermal separation phenomenon observed in Ranque–Hilsch tubes and other
swirling jet devices. In particular, the mechanical work of viscous forces which gives
rise to an intense loss of kinetic energy during the initial stages of the evolution has
been identified as the physical mechanism responsible for thermal separation.

1. Introduction
Swirling flows at large Reynolds numbers exhibit a number of distinctive features,

which are not yet sufficiently well understood. An example is the phenomenon of
vortex breakdown characterized by an abrupt structural change in the flow of a vortex
core, which consists of a sudden deceleration of the axial flow and the formation of a
stagnation zone followed by increased levels of steadiness and turbulence (see classical
works by Leibovich 1984; Escudier 1988; Sarpkaya 1971, 1995 among others). Several
breakdown patterns ranging from asymmetric spiral waves to almost axisymmetric
bubbles have been observed. The prediction and control of this phenomenon is
relevant to several physical and engineering applications such as tornadoes, delta
wings at high angles of attack, swirling flows inside pipes, combustion chambers,
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hydro-cyclone separators, etc. Another striking feature which swirling flows often
exhibit is that of thermal energy separation (the Ranque–Hilsch effect), which is
characterized by a substantial decrease of the stagnation temperature at the vortex
axis.

In this paper, we restrict ourselves to the study of free swirling flows such as
tornadoes. The cases of vortex flows in pipes or rotating flows in closed containers
are not considered here. Among the most relevant theoretical works on free swirling
flows is that due to Long (1961), who studied the structure of a self-similar viscous
vortex core driven by an outer axisymmetric irrotational flow. Far from the core,
the axial and the azimuthal components of the velocity decay as the inverse of the
distance to the axis. Long characterized the different near-axis viscous solutions by
means of the flow force M, a parameter related to the dimensionless axial momentum
flux of the flow, which is independent of the axial coordinate. Long found that for
values of M smaller than a critical value M∗ no self-similar solution exists, while
for M > M∗ there exist two different solutions which were termed types I and II by
Burggraf & Foster (1977).

Burggraf & Foster (1977) solved numerically the quasi-cylindrical (QC) equations
for the downstream evolution of a viscous vortex core whose axial and azimuthal
velocity components decay far from the axis as r−1, where r is the distance to the axis.
A Burger’s jet-like profile was assumed to exist at the upstream station of the axial
coordinate (z = 0). The numerical results showed that for values of the flow force M
(fixed by the conditions at the upstream station) larger than the critical value M∗,
the vortex core evolves towards one of the two Long’s self-similar solutions, while for
M < M∗ the QC approximation breaks down at a certain distance from the upstream
station and no self-similar solution is reached, just as predicted by Long. Following
Hall (1972), Burggraf & Foster interpreted the failure of the QC equations to produce
self-similar solutions as vortex breakdown.

A different approach to vortex breakdown was pioneered by Benjamin (1962) who
established an analogy between vortex breakdown and the hydraulic jump in which, as
is well known, a flow undergoes a supercritical–subcritical transition. Hall’s (viscous)
and Benjamin’s (inviscid) approaches to vortex breakdown are not contradictory in
principle. However, we will present in the Appendix a family of non-viscous conical
vortex flows that do not exhibit vortex breakdown when the mathematical scenario of
Benjamin’s criterion is applied. Only when viscosity effects are included to regularize
the vortex core does this family of vortices present vortex breakdown for finite values
of the swirl strength.

In the case of conically similar flows, Shtern & Hussain (1996) have clarified the
above picture. These authors found the existence of a third branch (type III) of self-
similar solutions to the Navier–Stokes equations, which forms a hysteretic loop with
the other two branches. Jump transitions between the different branches are found
when the control parameter of the flow reaches one or more threshold values. For
high Reynolds numbers, the near-axis behaviour of two of these branches corresponds
to Long’s solutions of type I and II, while the third one (type III) corresponds to
a two-cell flow. In this case, an inviscid, but rotational, outer flow and a potential,
non-slender, inner flow are separated by a viscous conical fan jet. Shtern & Hussain
found that at M = M∗, with decreasing M, a solution of type I jumps to a solution
of type III. They related this phenomenon to vortex breakdown since the two-cell
structure in conical flows bears a strong resemblance to the bubble structure with
re-circulating motion and negligible swirl inside that results very often from the vortex
breakdown phenomenon.
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The analysis of the Long vortex was extended by Fernández-Feria, Fernández de
la Mora & Barrero (1995) who considered self-similar swirling vortex cores which
asymptotically match Euler solutions whose axial and azimuthal velocity components
behave near the axis as rm−2, where r is the radial distance and 0 < m < 2; the case
m = 1 corresponds to Long vortex. The physical relevance of the flows analysed by
Fernández-Feria and co-workers, especially those with 1 < m < 2, appears when one
considers the large amount of experimental data (Keller, Egli & Exley 1985; Vatistas,
Lin & Kwok 1986; Ogawa 1993) which suggest that the azimuthal velocity of the
inviscid flow around real vortex cores is not exactly irrotational (m = 1) but of the
form r−n with power n in general smaller than 1 (m larger than 1). In particular,
Emanuel (1991) has pointed out that outside the core of a hurricane the winds fall
off gradually with radius, obeying approximately an r−1/2 law, corresponding just to
m = 1.5. In addition, the flows considered by Fernández-Feria et al. (1995) reproduce
some of the observed features of real vortex flows, i.e. vortex breakdown. These flows
can be characterized by an inviscid dimensionless swirling parameter L, the Squire
parameter, defined as the ratio between the azimuthal v and axial w components of
the inviscid velocity near the axis:

v = LWrm−2, w = Wrm−2, (1.1)

where W is a dimensional constant. The pressure field is given by Bernouilli’s equation
and near the axis behaves as

p

ρ
=
pr

ρ
+

(LW )2

2(m− 2)
r2(m−2), (1.2)

pr being a constant reference pressure. Parameter L plays a role somewhat analogous
to parameter M for Long’s vortex: when 1 < m < 2 no solutions exist for values
of L larger than a critical value L∗(m), which depends on m, while two self-similar
solutions (types I and II) are possible for L < L∗(m). This catastrophic behaviour
which occurs beyond L∗ was interpreted as vortex breakdown. For the case m = 1
(Long vortex), the outer flow and the near-axis boundary layer match only for the
particular value L =

√
2 (Long 1961; Fernández-Feria et al. 1995), so that, in this

case, the azimuthal and meridian motions are coupled and parameter L is no longer
suitable for the description of the m = 1 flows. In addition, for m 6= 1, the existence
of a third branch (type III) in conically similar flows at high Reynolds numbers
has also been found (Fernández-Feria et al. 1999). For 1 < m < 2 and L = L∗, with
increasing L a solution of type I jumps to a solution of type III where an irrotational
inner cell is separated from the inviscid but rotational outer cell by a very thin
viscous conical fan jet. The main conclusion of this study using self-similar solutions
is that the singularities often appearing in axisymmetric inviscid swirling flows cannot
always be regularized through thin viscous layers. As a result, a sharp boundary
is established between some physically unacceptable inviscid flows and those whose
existence is not forbidden by viscosity. These authors argued that the non-existence
of analytical solutions of slender self-similar viscous cores beyond a threshold value
supports vortex breakdown as a phenomenon of boundary layer separation type.

The success of the self-similar conical solutions in explaining some mechanical
features of the structure of vortex cores motivated Herrada, Pérez-Saborid & Barrero
(1999) to extend this model to account for thermal effects. In particular, they used the
results obtained by Fernández-Feria et al. (1995) to analyse the thermal structure of
self-similar vortex cores in situations where compressibility effects are small. Herrada
and coworkers found that this family of self-similar vortices exhibits a substantial
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decrease of the stagnation temperature (Ranque–Hilsch effect) at the vortex axis. It
should be emphasized that this thermal structure is obtained with a self-consistent and
physically realistic model without the need to resort to previous ad hoc explanations
such as turbulent heat transport or unsteady (acoustic) effects, see for example Deissler
& Perlmutter (1960) and Kurosaka (1982).

In this analysis, Herrada and co-workers assumed a viscous and conducting gas
vortex core driven by an inviscid and non-conducting gas outer vortex whose velocity,
pressure, and temperature fields satisfy the Euler equations. They assumed small
relative density variations in the flow (quasi-incompressible flow), whose order of
magnitude is related to those of pressure and temperature, according to the perfect
gas law, by ∆ρ/ρ ∼ ∆p/p−∆T/T . Observe that small values of the relative pressure
variations are equivalent to small values of the flow Mach number since, according
to the momentum equation, ∆p/p ∼ ρv2/p ∼ M2. Since the mechanical work of the
pressure forces is the leading term in the energy equation, it is easily shown that
the temperature changes in the flow ∆T/T are also O(M2). Therefore, for a perfect
gas, the density changes are also O(M2). For sufficiently small M the changes in the
thermodynamic properties from a base thermodynamic state are much smaller than
the velocity component which is O(M). Specifically, in a such a limit, the continuity
equation reduces in the leading order O(M) to the incompressible flow equation
∇ · v = 0. Then, the leading-order momentum equations completely determine the
pressure and velocity fields. Finally, the temperature field can be computed from the
known pressure and velocity fields using the leading-order energy equation. This is just
the quasi-incompressible approximation of the Euler (or Navier–Stokes) equations in
which the mechanical problem (continuity and momentum equations) can be solved
independently of the thermal problem in the absence of buoyancy effects.

Then, Herrada and coworkers calculated the temperature field for the inviscid and
non-conducting outer flow using entropy conservation along streamlines. In effect, for
a perfect gas

S − Sr = cp ln
T/Tr

(p/pr)(γ−1)/γ
, (1.3)

where Sr and Tr are constant reference entropy and temperature respectively, pr =
ρRgTr , and cp and Rg are the specific heat ratio at constant pressure and the gas
constant respectively. For (T − Tr)/Tr and (p− pr)/pr small enough (1.3) leads to

cp

[
T − Tr
Tr

− γ − 1

γ

p− pr
pr

]
= So(Ψ ), (1.4)

where So remains constant along the streamlines Ψ = const. Equation (1.4) can be
recast in the form

cp(T − Tr)− p− pr
ρ

= cpTrSo(Ψ ), (1.5)

and taking into account Bernouilli’s equation (p − pr)/ρ + (v2 + w2)/2 = Π(Ψ ) and
(1.5), one arrives at

cp(T − Tr) + 1
2
(v2 + w2) = cpTrSo(Ψ ) +Π(Ψ ) = H(Ψ ), (1.6)

where Π is constant along the streamlines. Finally from the definition of total
temperature Tt,

cpTt = cpT + 1
2
(w2 + v2) = cpTr +H(Ψ ); (1.7)
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note that the total temperature Tt and total enthalpy ht = cpTt remain constant along
the streamlines.

For the self-similar flows considered by Herrada et al. (1999), H(Ψ ) behaves near
the axis as

H(Ψ ) = Hor
2(m−2), (1.8)

so that (1.7) together with (1.1) and (1.9) lead to the following expression for the
near-axis behaviour of the static temperature:

T = Tr + α
(LW )2

2(m− 2)cp
r2(m−2), (1.9)

where

α =
(m− 2)

L2

[
2Ho

cpW 2
− (1 + L2)

]
(1.10)

is a dimensionless constant which contains the arbitrary dimensional constant Ho

characterizing the total temperature field along the streamlines. Note that, in addition
to exponent m, the inviscid and non-conducting self-similar motions considered by
Herrada et al. are characterized by three integrals of the motion, W , L and Ho

(or α), which correspond to Bernouilli, Kelvin, and stagnation enthalpy conservation
theorems. Note also that for 0 < m < 2, the stagnation temperature in the inviscid
motion increases towards the axis if

α 6 (2− m)(1 + 1/L2), or equivalently Ho > 0. (1.11)

It is found that under condition (1.9) self-similar solutions to the thermal problem
exist and, for relevant values of the parameters of the problem, they exhibit a
substantial reduction of the total temperature near the vortex axis. The same effect
of thermal separation has been observed in real vortex-jet cores to which the quasi-
incompressibility assumption applies to a first approximation, for instance the flow
inside Ranque–Hilsch devices. In effect, typical values in Ranque–Hilsch tubes are:
∆T/T ranging from 0.1 to 0.2, with ∆T ∼ 30 to 40 K and T ∼ 300 K and the
characteristic Mach number of the flow in the interval M2 ∼ 0.3 to 0.15 with velocities
ranging from 100 m s−1 to 50 m s−1. Finally, buoyancy effects are neglected as a norm
in the analysis of flows inside Ranque–Hilsch devices since the buoyancy to inertial
force ratio is very small. For tube lengths ranging from 0.2 to 0.5 m, the maximum
order of the ratio between the characteristic buoyancy velocity and the velocity of
the forced flow [gH(∆T/T )]1/2/v is typically 10−2.

Self-similar solutions at high Reynolds numbers have provided valuable information
about both the mechanical (Fernández-Feria et al. 1995) and thermal (Herrada et al.
1999) aspects of the structure of vortex cores. However, the self-similar analysis is
unable to provide any information about the evolution of the vortex since it is just
concerned with the far downstream structure of the vortex after it has lost its memory
of upstream conditions. Thus, questions such as whether a given vortex defined
at a certain upstream station will actually evolve downstream towards a self-similar
structure or, on the contrary, will break down, are beyond the scope of the self-similar
analysis. By the same token, the physical mechanism leading to thermal separation
cannot be elucidated by this kind of analysis. Therefore, in an attempt to answer these
questions, we have computed numerically the mechanical and thermal downstream
evolution of a vortex-jet core using the QC approximation to the Navier–Stokes
equations. To investigate if the evolution leads to the self-similar state predicted by
Fernández-Feria et al. (1995), and also Herrada et al. (1999) for the thermal case, we
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z

r

Figure 1. Sketch of the flow considered.

have imposed that the velocity, pressure and temperature fields very far from the axis
match the external flow considered by those authors, namely the conical self-similar
inviscid and non-conducting solutions to Euler equations. Therefore, the behaviour of
the numerical solutions far from the axis must coincide with that of the self-similar
Euler solutions near the axis ((1.1), (1.2), and (1.9)).

In addition to the outer flow conditions, characterized by parameters m, L, W and α,
the evolution of a slender core also depends on the conditions at the upstream station
(z = 0) at which the numerical integration starts. These initial conditions should be
determined by solving the very complicated full (non-slender) set of Navier–Stokes
equations in the region where the flow turns and gives rise eventually to the vortex
jet, see figure 1. Nonetheless, since our interest is in the description of the downstream
evolution of the resulting vortex jet, we have not considered the details of the flow in
the turning region, but instead we have imposed at z = 0 a velocity field which is a
generalization of the Burger vortex. This type of initial condition generalizes to the
case m 6= 1 the one used by Burggraf & Foster (1977) in their numerical study of the
downstream evolution of a vortex with m = 1.

In our analysis, the upstream velocity profile is characterized by a dimensionless
parameter a which accounts for the axial momentum of the vortex jet at the upstream
station. As a result of the study of the vortex evolution we will obtain the critical
value of the swirl strength L = Lb(a), as a function of a, beyond which any vortex with
L > Lb(a) must breaks down at a certain downstream station. Numerical results also
show that the limit of the breakdown criterion Lb(a) for large values of parameter
a coincides with the breakdown criterion L = L∗ given by Fernández-Feria et al.
(1995), beyond which self-similar vortex cores do not exist. Finally, our numerical
study permits us to compute the total temperature profile Tt(r) at several downstream
stations as well as the different terms entering in the total temperature equation.
In this way, we obtain a picture of the physical mechanism of thermal separation
resulting from a self-consistent plausible model which, to the best of our knowledge,
is lacking in the existing literature.

The paper is organized as follows. The equations and boundary conditions of the
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problem are given in § 2. Section 3 contains a detailed description of the numerical
procedure. The results obtained are summarized and discussed in § 4. Section 5 con-
tains conclusions. Finally, an analysis of the role of viscosity in the vortex breakdown
in the flows considered in this paper is carried out in the Appendix.

2. Equations and boundary conditions
If the characteristic Reynolds number of the flow sketched in figure 1 is large

enough, Re = Wδm−1/ν � 1, where Wδm−2 is a characteristic velocity of the flow, δ is
a characteristic vortex core length, and ν is the kinematic viscosity, which is assumed
to be independent of the temperature, the effect of viscosity is only significant in two
thin regions: the turning region near the wall plane and the vortex core. Outside these
two regions we will assume that the axial and azimuthal velocity components of the
inviscid flow decay far from the axis as rm−2. In dimensionless cylindrical coordinates
(r, φ, z), the QC equations governing the slender, viscous, quasi-incompressible vortex-
jet core are

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (2.1)

v2

r
=
∂p

∂r
, (2.2)

u
∂v

∂r
+ w

∂v

∂z
+
vu

r
=

[
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2

]
, (2.3)

u
∂w

∂r
+ w

∂w

∂z
= −∂p

∂z
+

[
1

r

∂

∂r

(
r
∂w

∂r

)]
, (2.4)

u
∂T

∂r
+w

∂T

∂z
= u

∂p

∂r
+w

∂p

∂z
+

1

Pr

[
1

r

∂

∂r

(
r
∂T

∂r

)]
+

[(
∂w

∂r

)2

+

(
∂v

∂r
− v

r

)2
]
, (2.5)

where p, T , u, v and w are dimensionless and denote pressure, temperature (measured
from the reference temperature Tr), and radial, azimuthal and axial components
of the velocity respectively. To write equations (2.1)–(2.5) in dimensionless form we
have used δ and Reδ as radial and axial characteristic length scales, Wδm−2 as
the characteristic velocity of the axial and azimuthal motions, ν/δ as the radial
characteristic velocity, ρW 2δ2(m−2) as the characteristic pressure, and W 2δ2(m−2)/cp
as the characteristic temperature; ρ is the fluid density, Pr = ρνcp/λ is the Prandtl
number, and λ is the thermal conductivity which will be taken as constant throughout
the analysis.

Equations (2.1)–(2.5) must be solved subject to the boundary conditions

u = v = ∂w/∂r = ∂T/∂r = 0 at r = 0, (2.6)

v → Lrm−2, w → rm−2, p→ L2r2m−4/(2m− 4) as r →∞ (2.7)

and

T → α
L2

2(m− 2)
r2m−4 as r →∞. (2.8)

Note that it is only far from the axis (r → ∞) that the vortex flow is required to
match the self-similar conical Euler solutions found by Fernández-Feria et al. (1995);
of course, for finite values of r the vortex structure will not, in general, be self-similar.
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In order to start the numerical integration of equations (2.1)–(2.5), the velocity and
temperature profiles must be specified at some upstream station. Without entering
into details of the flow in the turning region, see for example the sketch in figure 1,
we have chosen as initial conditions at z = 0 a generalized Burger’s vortex-jet-like
profile of the form

vi = Lrm−2[1− exp(−r3−m)], (2.9)

wi = rm−2[1− exp(−r3−m)]
2−m
3−m + (a− 1) exp(−r3−m), (2.10)

where a is the dimensionless axial velocity at the axis. Since we are primarily inter-
ested in explaining the mechanisms of the thermal separation which takes place in
the downstream evolution of vortex cores, we will assume, for simplicity, that at the
upstream station the stagnation temperatures of both the outer boundary and the
core are uniform; this requires that in equations (1.7), (1.8) and (1.10)

Ho = 0 or equivalently α = (2− m)(1 + 1/L2). (2.11)

In this case, the condition in (2.8) is

T → − 1
2
(1 + L2)r2(m−2) as r →∞. (2.12)

It is clear that this behaviour is met at the upstream station z = 0, if one takes the
temperature distribution in the core there to be

Ti = − 1
2
(w2

i + v2
i ). (2.13)

Equations (2.1)–(2.5) and boundary conditions (2.6), (2.7) and (2.12), and (2.9),
(2.10) and (2.13) show that the parameters governing the flow are the Prandtl number
Pr, Squire number L, exponent m, and parameter a; the latter characterizes the
amount of axial momentum in the vortex core at the upstream station. In this work,
we will consider only downstream evolution of vortex cores with Prandtl number
Pr = 0.72. The influence of varying Prandtl number, including asymptotic, for both
large and small values of Pr, has been analysed for self-similar vortices by Herrada
et al. (1999). Note that profiles (2.9), (2.10) and (2.13) satisfy conditions (2.6), (2.8)
and (2.12) and include the initial velocity profiles considered by Burggraf & Foster
for m = 1 as a particular case; in this case (m = 1) a plays the role of the flow force
M.

The numerical integration of (2.1)–(2.6) and (2.7) and (2.12) determines the me-
chanical and thermal downstream evolution of the initial vortex (2.9), (2.10) and
(2.13) once the values of L, a and m are specified. As we shall see later, the numerical
results show that for a given m, the QC solutions break down at a finite distance
from the upstream station for values of the parameters L and a lying on a certain
region of the (L, a)-plane, while the integration of (2.1)–(2.8) and (2.12)–(2.13) can
proceed smoothly and indefinitely for values of parameters L and a outside the break-
down region. In this last case, we found that the numerical solution of (2.1)–(2.8)
and (2.12)–(2.13) tends for large z to one of the self-similar solutions reported by
Fernández-Feria et al. (1995) and Herrada et al. (1999). Unlike the work by Burggraf
& Foster (1977) who studied the occurrence of breakdown in vortex jets characterized
only by the flow force a, we have considered here a family of vortex jets defined not
only by parameter a but also by two additional parameters L and m which account
for the swirl strength and for the rate of decay of the velocity field for large distance
from the axis.
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3. Numerical integration
For the numerical integration of (2.1)–(2.6) and (2.12)–(2.13) we have employed an

explicit line method. From the numerical point of view it is convenient to use the
meridian stream function Ψ and the circulation Γ = rv as new dependent variables.
In terms of the new variables, system (2.1)–(2.5) becomes

Γ 2

r3
= pr, (3.1)

−ΨzΓr

r
+
ΨrΓz

r
= Γrr − Γr

r
, (3.2)

−Ψz

r

(
Ψr

r

)
r

+
Ψr

r

(
Ψr

r

)
z

= −pz +

(
Ψr

r

)
rr

+
1

r

(
Ψr

r

)
r

, (3.3)

−Ψz

r
Tr +

Ψr

r
Tz = −Ψz

r

Γ 2

r3
+
Ψr

r
pz +

1

Pr

(
Trr +

1

r
Tr

)

+

(
Ψrr

r
− Ψr

r2

)2

+

(
Γr

r
− 2

Γ

r2

)2

, (3.4)

where subscripts r and z denote derivatives with respect to the radial and axial
coordinates.

Eliminating the derivatives of pressure p with respect to z and r from system
(3.1)–(3.4), one arrives at

B1Ψz + B2Ψzr + B3Ψzrr = B4, (3.5)

Γz =
Γr

Ψr

Ψz +
rΓrr − Γr

Ψr

, (3.6)

Tz =
Ψz

Ψr

Tr − Ψz

Ψr

Γ 2

r3
+
Ψz

r

(
Ψr

r

)
r

− Ψr

r

(
Ψr

r

)
z

+

(
Ψr

r

)
r

r +
1

r

(
Ψr

r

)
r

+
1

Pr

(
r

Ψr

Trr +
1

Ψr

Tr

)
+

r

Ψr

[(
Ψrr

r
− Ψr

r2

)2

+

(
Γr

r
− 2

Γ

r2

)2
]
, (3.7)

where functions B1, B2, B3 and B4 are

B1 = −r2Ψrrr + 3rΨrr − 3Ψr + 2rΓΓr/Ψr, (3.8)

B2 = −rΨr, B3 = r2Ψr, (3.9)

B4 = r3Ψrrrr − 2r2Ψrrr + 3rΨrr − 3Ψr − 2Γ (rΓrr − Γr)/Ψr. (3.10)

The discretization of (3.5)–(3.7) into N + 1 points along the radial direction
[ri = (i − 1) dr, i = 1 . . . N + 1, dr = r∞/(N − 1)] allows efficient integration of them.
Using second-order central differences, one then obtains a system of 3N–3 ordinary
differential equations of the form

A

 Ψz(1)
...

Ψz(N − 1)

 = R1,

 Γz(1)
...

Γz(N − 1)

 = R2,

 Tz(1)
...

Tz(N − 1)

 = R3,



60 M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea and A. Barrero

where A is the tridiagonal matrix:

A =


b1 c1 0 · · ·
a2 b2 c2 · · ·

. . .

· · · aN−2 bN−2 cN−2

· · · 0 aN−1 bN−1

 , (3.11)

with coefficients ai, bi y ci (i = 1, . . . , N − 1), given by

ai = −B2(ri, z)/(2 dr) + B3(ri, z)/dr
2, (3.12)

bi = B1(ri, z)− 2B3(ri, z)/dr
2, (3.13)

ci = B2(ri, z)/(2 dr) + B3(ri, z)/dr
2, (3.14)

and vectors R1, R2, R3 are given by

R1(i) = B4(ri, z), (3.15)

R2(i) =

(
Γr

Ψr

Ψz +
rΓrr − Γr

Ψr

)
(ri, z), (3.16)

R3(i) =

{
Ψz

Ψr

Tr − Ψz

Ψr

Γ 2

r3
+
Ψz

r

(
Ψr

r

)
r

− Ψr

r

(
Ψr

r

)
z

+

(
Ψr

r

)
rr

+
1

r

(
Ψr

r

)
r

+
1

Pr

(
r

Ψr

Trr +
1

Ψr

Tr

)
+

r

Ψr

[(
Ψrr

r
− Ψr

r2

)2

+

(
Γr

r
− 2

Γ

r2

)2
]}

(ri, z).

(3.17)

In terms of Ψ , Γ and T the initial conditions (2.9)–(2.13) and the boundary
conditions (2.6)–(2.8) and (2.12) are

Ψr(r, 0) = rm−1[1− exp(−r3−m)]
2−m
3−m + (a− 1)r exp(−r3−m), (3.18)

Γ (r, 0) = L/r1−m[1− exp(−r3−m)], (3.19)

T (r, 0) = − 1
2
(Γ 2(r, 0)/r2 +Ψ 2

r (r, 0)/r2), (3.20)

and

Ψ = Γ = Ψr = Tr = 0 on r = 0, (3.21)

Γ → Lrm−1, Ψr → rm−1, T → − 1
2
(L2 + 1)r2m−4 as r → r∞. (3.22)

Since tridiagonal systems can be very easily solved numerically (Press et al. 1989),
equations (3.5)–(3.7) with conditions (3.18)–(3.22) can be efficiently integrated in the
z-direction using a variable-step-size fourth-order Runge–Kutta method once m, a
and L are specified. In our calculations the number of lines N = 2600 have been used
to discretize the radial variable. Moreover, the boundary of the numerical domain
has been taken sufficiently far from the axis, r∞ = 300, to ensure that the vortex core,
which grows downstream, always remains inside the considered domain. The numeri-
cal accuracy of the code has been tested repeatedly for several values of N. Results are
insensitive up to the fifth digit for N > 2600. Note that our procedure permits auto-
matic control of the error for the downstream integration along the lines (z-direction)
by the Runge–Kutta adaptive step size; the relative error tolerance given to the
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Figure 2. Critical values Lb as a function of a. The critical self-similar value L∗(m = 1.1)
is also given.

Runge–Kutta solver was 10−5. Note also that the use of the method of lines avoids the
complicated and expensive nonlinear iteration required by finite difference methods.

4. Numerical results
4.1. Mechanical problem

Ignoring perturbations of finite amplitude, the question of whether a given vortex
breaks down or remains slender indefinitely downstream can be answered by solving
the problem formulated in §§ 2 and 3. Numerical results show that for given values
of parameters a and m, there exists a critical value Lb(a, m) such that if L < Lb the
numerical integration may proceed downstream arbitrarily far, while if L > Lb the
slender structure of the vortex breaks up at a certain value of z giving rise to a
non-slender structure. In the former case, we find that the vortex jet evolves towards
the self-similar solution corresponding to the given values of L and m as described by
Fernández-Feria et al. (1995). Figure 2 shows values of Lb as a function of parameter
a for m = 1.1. It is found that Lb grows monotonically with a, and has an asymptote
at Lb = L∗(m) which is precisely the breakdown threshold given by Fernández-Feria
et al. (1995). This threshold value L∗, which was obtained by these authors from the
condition of non-existence of similarity solutions, provides a conservative criterion for
breakdown for the evolution of non-self-similar vortices like those considered here,
since, independently of the value of a, a vortex jet with a value of L larger than L∗(m)
must break up at a certain distance downstream. Figure 3 shows the velocity at the
axis as a function of the downstream distance z for three vortices characterized by
different values of parameters L an a but the same value of m, (m = 1.1). It can be
seen that, in the case L = 1.5 and a = 2.5, the velocity at the axis decreases abruptly
and the QC approximation fails at the station z = z∗ ' 1.9, where vortex breakdown
takes place. Note that independently of the value of parameter a, a vortex with
L = 1.5 and m = 1.1 will unavoidably break since the vortex breakdown threshold
L∗(m = 1.1) ' 1.22 (see figure 2) is smaller than L = 1.5; of course, the distance z∗ at
which the vortex breaks down increases with a. The other two vortices considered in
figure 3 have the same value of L, L = 1.2, but different values of a. The vortex with
less velocity at the upstream station, a = 1.6, breaks at z∗ ' 0.79 since, in this case,



62 M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea and A. Barrero
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Figure 3. Axial velocity at the axis as a function of z for m = 1.1 and different values of
parameters a and L.
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Figure 4. Normalized axial wz(2−m)/m and azimuthal vz(2−m)/m velocities for a vortex with m = 1.1,
a = 1.9, L = 1.2 as a function of the normalized radial distance r/z1/m at different z-stations.
Self-similar velocity profiles are also given for comparison.

the breakdown value Lb(a = 1.6) ' 1.15 (see figure 2) is smaller than L = 1.2. On the
contrary, the vortex with a = 2 evolves towards a self-similar solution since L = 1.2
is smaller than the breakdown value Lb(a = 2) ' 1.21.

Figure 4 shows the computed axial and azimuthal velocity profiles of a vortex
with L = 1.2 and a = 1.9 at three different downstream stations (z = 2, z = 4, and
z = 10). The velocity and the radial distance have been appropriately re-scaled for
comparison to the self-similar solution, which is also plotted in the figure. Note
that the vortex considered evolves towards a self-similar solution since in this case
L = 1.2 < Lb(a = 1.9). Note also that due to the action of centrifugal forces the axial
velocity profile changes from jet-like to wake-like.

Before closing this section, let us point out that in associating vortex breakdown
with the failure of the QC approximation at some downstream station, we are
following Hall’s approach to the breakdown phenomenon. Of course, we do not
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mean that the failure of the QC equations provides a physical explanation of the
phenomenon: that, on the contrary, must be sought in the full (non-slender) Navier–
Stokes equations. In fact, what appears as a catastrophic event from the point of
view of the QC equations must be a sharp, but continuous, transition from a slender
to a non-slender flow when described with the full Navier–Stokes equations. Clearly,
it is in this transition region where the physical explanation to vortex breakdown
must be sought. In any case, there is little question that the QC equations remain a
valuable tool in the analysis of many real vortex flows, since the QC results concerning
the downstream evolution of the vortex up to very near the breakdown station are
rather close to the ones found by sophisticated numerical models and experiments.
Therefore, although the QC failure does not provide a complete physical explanation
to vortex breakdown, it can be seen as a symptom which accompanies breakdown
and gives important clues about the role that viscosity plays in that phenomenon. In
effect, our results, and those from self-similar analysis, suggest that viscosity plays a
very important role in the breakdown of the unconfined vortices considered here. In
fact, it seems that if the swirl strength exceeds the critical value Lb(a, m), the viscous
axial momentum transfer from the region of maximum axial velocity is not efficient
enough to keep the vortex confined in a slender configuration against the effect of
the centrifugal forces. Then the radial velocity suddenly increases and, as required
by continuity, the axial velocity decreases and the vortex breaks down. This scenario
suggests that in vortex flows where viscosity is the mechanism which regularizes the
behaviour of the velocity field near the axis, viscous effects must play an essential
role in the breakdown phenomenon. To illustrate this, we have considered a family of
inviscid self-similar vortex-jet flows with a singular behaviour at the axis. As shown
in the Appendix, when Benjamin criterion is applied to this family, it is found that
it does not exhibit breakdown for any value of L. However if, to simulate a real jet
vortex, one tries to regularize the flow by a slender viscous vortex core which far from
the axis matches the given inviscid family, one finds that such a slender viscous core
exists only if L is less than a critical value.

4.2. Thermal problem

Numerical results from the energy equation yield both the total and static temperature
fields. Radial profiles of the total temperature Tt in the vortex core for several values
of the downstream distance z are plotted in figure 5. The total temperature, which at
the upstream station (z = 0) is uniform along the radial direction, evolves towards a
non-uniform profile with lower values of the total temperature in the near-axis zone
and higher ones far from the axis.

To elucidate the physical mechanisms leading to the decrease of the total tempera-
ture in swirling flows, it is convenient to write the equation for the dimensionless total
temperature Tt in the form

w
∂Tt

∂z
= −u∂Tt

∂r
+ Pr−1∇2T + τ :∇v + v · ∇ · τ , (4.1)

where τ and v represent the viscous stress tensor and the velocity field respectively.
Equation (4.1) expresses the convection of total temperature in the axial direction as
a result of convection of total temperature in the radial direction, heat conduction,
viscous dissipation and the mechanical work of viscous forces respectively. For the
vortex jet considered in figure 5, we have computed, at a given station (z = 0.1), the
QC approximation of each of the terms in (4.1) and the results are plotted in figure 6.
As shown in the figure, in the near-axis region the total temperature decreases in
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Figure 5. Total temperature profiles at different z-stations for m = 1.1, a = 1.35, L = 1.079,
Pr = 0.72.
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Figure 6. Illustration of the physical mechanisms involved in thermal separation. Values have
been computed at the station z = 0.1 for the vortex jet considered in figure 5.

the axial direction since w ∂Tt/∂z < 0 and w > 0. This decrease in total temperature
(separation effect) is due to the intense loss of kinetic energy near the axis as a
result of the mechanical work of viscous forces (the only term which gives a negative
contribution to the right-hand side of (4.1)) since both heat conduction and viscous
dissipation tend to increase the total temperature in the near-axis zone, and the effect
of radial convection is almost negligible. It should be noticed that diffusion effects,
both viscous and heat conduction, are essential to the thermal separation phenomenon
since, otherwise, the total temperature of the fluid particles remains constant along
the streamlines.

It can be observed in figure 5 that the minimum value of the total temperature,
which is located at the axis, first decreases downstream, reaches an absolute minimum
at a certain station (z ' 0.18 for the case considered in figure 5) and then increases
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Figure 7. Total temperature at the axis as a function of z for the vortex jet considered in figure 5.
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r/z1/m at different z-stations for m = 1.2, a = 2, L = 1.079, Pr = 0.72. Self-similar profiles of the
total temperature are also given for comparison.

steadily. This behaviour is plotted in figure 7 where values of the minimum total
temperature at the axis as a function of z are plotted. The abrupt decrease of the
total temperature at the beginning of the downstream evolution is related to the
strong slowing down of by the vortex. Beyond the station at which the absolute
minimum in total temperature is reached, the increase in the static temperature due
to heat conduction and viscous dissipation is greater than the loss of kinetic energy
due to the slowing down of the vortex and, consequently, the stagnation temperature
starts to increase with the axial distance.

Total temperature profiles at different z-stations are plotted in figure 8 for a vortex
characterized by the values m = 1.2, a = 2, L = 1.075, and Pr = 0.72. In this case,
the vortex core evolves towards a self-similar solution and the variables have been
appropriately re-scaled for easier comparison. As shown by Herrada et al. (1999), the
decrease in total temperature (thermal separation) predicted by self-similar solutions
is in good agreement with the observed values in real swirling flows.

The amount of thermal separation depends strongly on the swirl strength L as
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Figure 9. Total temperature at the axis as a function of z for three different values of L and
m = 1.1, a = 1.35, Pr = 0.72.

shown in figure 9 where the downstream evolution of the total temperature at the
axis is plotted for several values of L and fixed values of the remaining parameters.
Note that the temperature decrease for L = 1.1 is almost twice that for L = 0.9. This
can be explained by noting that the larger the swirl strength the larger the non-
favourable pressure gradient along the z-direction (∂p/∂z increases) and the larger
the rate of loss of kinetic energy during the initial stages of the evolution. Observe
also that after the station of minimum total temperature is reached, the rate of gain of
static temperature by the action of heat conduction and viscous dissipation is greater
than the rate of loss of kinetic energy by the slowing down effect of the viscous forces.
This results in a net increase of total temperature as z increases.

Finally, note that for the vortices considered in figure 9, the value L = 1.1 is slightly
less than the breakdown value Lb(a = 1.35) (figure 2) and, therefore, the amount of
thermal separation for the case L = 1.1 is very close to the maximum one that can be
achieved if we demand that the vortex jet remains slender up to z →∞. Nonetheless,
the value of L and consequently the amount of thermal separation can be increased
if this last condition is relaxed by just requiring that the vortex remains slender up
to a certain station beyond that where the minimum of total temperature is reached.
This increase of thermal separation should be of value in the design of Ranque tubes.

5. Conclusions
In this paper, the QC approximation has been used to study numerically both the

mechanical and thermal downstream evolution of a viscous vortex-jet core driven by
an inviscid but vortical flow whose velocity, pressure and temperature fields behave
near the axis as

v → Lrm−2, w → rm−2, p→ L2r2m−4/(2m− 4), T → − 1
2
(1 + L2)r2(m−2). (5.1)

The reason for solving the problem using the QC approximation is the drastic
simplification which it introduces compared to the numerical solution of the complete
Navier–Stokes equations, which is particularly relevant for very complicated open
flows as those considered here. In addition, as Beran & Culick (1992) have shown for
the much simpler case of swirling flows in pipes, the QC results are expected to be
close to the real ones.
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The swirling parameter L, defined as the ratio between the azimuthal and axial
components of the inviscid velocity near the axis, is a characteristic of the outer
inviscid swirling flow. In addition to L, the evolution of the vortex jet core depends
on the velocity profile at the station at which we start the numerical integration.
At this station, a generalized Burger’s vortex-jet-like profile characterized by the
dimensionless velocity at the axis a has been considered. For given values of the
parameters of the problem (L, a and m), the numerical integration proceeds starting
with profiles (2.9), (2.10) and (2.13) to obtain the downstream evolution of the velocity
and temperature fields.

Numerical results show that for a given value of m, there exists a critical value
of the swirling parameter Lb(a) which depends on a such that if L is smaller than
Lb the vortex core remains slender and its structure evolves asymptotically for large
values of z towards a self-similar one of the class described by Fernández-Feria et
al. (1995). For L larger than Lb the vortex breaks up at a certain station z∗ and
gives rise to a non-slender structure; the value of the breakdown distance z∗ increases
for increasing values of a. We have also found that for a given m, the breakdown
curve Lb(a, m) has an asymptote L∗(m) which coincides with the values found by
Fernández-Feria et al. (1995) beyond which self-similar solutions fail to exist and
which they identified with a criterion for vortex breakdown. In fact, for the kind of
vortices considered here, L∗ can be taken as a conservative threshold for breakdown
since a vortex jet with a value of L larger than L∗(m) breaks unavoidably at a certain
distance downstream.

As previously suggested by the self-similar analysis, our numerical results confirm
that the evolution of flows with a viscous vortex core cannot remain indefinitely
slender for values of the swirl strength larger than a critical one. In these flows,
viscous effects play a crucial role in vortex breakdown since they set limits to the
values of L which allow the existence of slender vortex-jet cores which are regular
at the axis. In contrast, as shown in the Appendix, inviscid vortex-jet flows whose
velocity field is singular at the axis do not present vortex breakdown for any value of
L. This result confirms the important role that viscosity must play in the breakdown of
real flows with a viscous vortex core. The quasi-incompressible QC equations provide
a self-consistent model to compute the total temperature field as a function of the
parameters of the problem and shed light on the physical mechanisms responsible for
the phenomenon of thermal separation observed in real vortices (for example those
in Ranque tubes).

Results of the thermal downstream evolution of the vortex core reveal a strong
decay of the total temperature during the initial stages of the evolution; the thermal
separation mechanism is mainly due to the loss of kinetic energy associated with the
slowing down of the vortex core due to the mechanical work of the viscous forces.
Once the viscous core has been substantially slowed down and the total temperature
reaches a minimum, the effect of heat conduction and viscous dissipation dominates
that of the mechanical work of viscous forces and the total temperature increases
downstream due to the increase of the static temperature.

We have found a sharp dependence of the magnitude of the separation effect on
parameter L that can be attributed to the fact that the increase of centrifugal forces
with L gives rise to a stronger deceleration of the flow during the initial stages of the
evolution.

This work has been partially supported by the Dirección General de Enseñanza
Superior of Spain, PB96-0679-C02-02.
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Appendix
In this Appendix, we will apply Benjamin’s theory to establish a criterion for

breakdown of the inviscid family of conical vortices given by

Ψ = smF(x, ξ), C = KΨ (m−1)/m, H =
K1

2(2− m)
Ψ 2(m−2)/m, ξ = ln(s/so), (A 1)

where (s, x = cos θ, φ) are spherical coordinates, s is the distance from the origin
and θ and φ are the polar and azimuthal angles, m is a real number in the range
1 6 m < 2, and K and K1 are arbitrary positive dimensional constants related to the
strength of the azimuthal and meridional motion respectively.

The stream function Ψ satisfies the Bragg–Hawthorne equation (also known as the
Long–Squire equation) which in spherical coordinates is

∂2Ψ

∂s2
+

1− x2

s2
∂2Ψ

∂x2
= s2(1− x2)

dH

dΨ
− C dC

dΨ
, (A 2)

where the two Lagrangian constants of the motion, circulation C and stagnation
pressure H defined as

C =

∮
v · dl and H =

p

ρ
+ 1

2
v · v, (A 3)

depend only on Ψ . Expressions (A 1) represent mathematically the high Reynolds
number flow inside the conical domain (1 > x > xc, si 6 s 6 so).

To analyse the spatial stability of these basic solutions we consider the following
expansion:

Ψ (s, x, ξ) = smF(x, ξ) = sm[Fb(x) + Fd(x) exp(αξ) + · · ·], (A 4)

where subscripts b and d denote basic and disturbance solutions and the eigenvalues
α = αr+iαi depend on the values K and K1 characterizing the basic solution. Following
Benjamin (1962), basic flows with values of K and K1 which allow the existence of
standing waves of zero frequency, αi 6= 0, are called subcritical while supercritical
ones are those with values of K and K1 leading to real eigenvalues. Transition from
supercritical to subcritical flows is interpreted as vortex breakdown.

On introducing (A 4) into (A 2) and (A 3) and defining

Y = (m/K)2F
2/m
b , D = 2m2K1/K

4, (A 5)

we arrive, after neglecting terms of higher order, at the following two basic and
disturbed problems:

Y Y ′′ +
m− 2

2
Y ′2 + 2

m− 1

1− x2
(Y 2 + Y ) + D = 0, (A 6)

with boundary conditions

Y (1) = Y (xc) = 0, (A 7)

and

(1− x2)F ′′d + q(x, m, D, α)Fd = 0, (A 8)

q =

[
(m− 1 + α)(m+ α) +

(m− 4)D(1− x2)

2Y 2
+

(m− 1)(m− 2)

Y

]
(A 9)

with boundary conditions

Fd(1) = Fd(xc) = 0. (A 10)
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Constant D measures the strength of meridional motion K1 relative to the strength
of swirling motion K and is related to the swirling parameter L by

D = 2(2− m)

(
L2 +

1− m
4− 2m

)2

− (m− 1)2

2(2− m)
. (A 11)

The basic problem (A 6)–(A 7) was considered in Fernández-Feria et al. (1999). It can
be easily shown that solutions of equation (A 6) satisfying the boundary condition at
the axis, x = 1, behave as

Y = 2a1(1− x)(1 + A(1− x)λ) + O(1− x)2, x→ 1, (A 12)

where a1 and λ are the positive roots of

(m−2)a2
1+(m−1)a1+D/2 = 0 and λ2+(m−1)λ+m−2+(m−1)/(2a1) = 0. (A 13)

Taking into account (A 5) and (A 12) it can be seen that (A 4) behaves near the axis
as

Ψ (s, 1) ' smθm ' rm, (A 14)

which matches the behaviour given in (1.1) when θ → 0.
For given values of m in the range 1 6 m < 2, and of xc, D and A, one must start

the numerical integration of (A 6) near the axis with behaviour (A 12) and proceed to
the station xc where Y (xc) will not in general vanish. The numerical procedure has
to be repeated with different values of A until one is found for which the numerical
solution of (A 6) satisfies the boundary condition Y (xc) = 0.

Problem (A 8)–(A 11) has two families of eigenvalues αk and αk (k = 1, 2, . . .∞)
which are symmetric with respect to α = (1 − 2m)/2 since they satisfy the condition
αk + αk = (1 − 2m)/2. For given values of m and xc, and any arbitrary value of D
one finds numerically that both families are real and satisfy the condition αkαk < 0
for any value of the index k. Moreover, the signs of αk and αk remain unchanged
for D ranging from zero to infinity. Accordingly, in the conical domain si 6 s 6 so,
xc 6 x 6 1, a general steady perturbation induced by disturbances at the boundaries
(s = si, s = so) of a basic solution characterized by a value of D outside the breakdown
parametric region (supercritical basic flow) can be represented by superposition of
modes with αk < 0 (decaying for ξ > 0) which provide the contribution of disturbances
coming from the inner boundary s = si and modes with αk > 0 (decaying for ξ < 0)
which account for the contribution of disturbances from the outer boundary s = so.
Therefore, perturbations can grow neither downstream nor upstream. Observe also
that the supercritical character of the basic flow can never change as we vary D (or
L) since the sign of the eigenvalues are independent of D. Hence, according to the
inviscid analysis, the family of vortex flows considered here with any arbitrary value
of L ranging from zero to infinity do not undergo vortex breakdown.

REFERENCES

Benjamin, T. B. 1962 Theory of vortex breakdown phenomenon. J. Fluid Mech. 14, 593–629.

Beran, P. S. & Culick, F. E. C. 1992 The role of non-uniqueness in the development of vortex
breakdown in tubes. J. Fluid Mech. 242, 491–527.

Burggraf, O. R. & Foster, M. R. 1977 Continuation or breakdown in tornado-like vortices.
J. Fluid Mech. 80, 685–703.

Deissler, R. G. & Perlmutter, M. 1960 An analysis of flow and energy separation in a turbulent
vortex. Intl J. Heat Mass Transfer 1, 173.

Emanuel, K. A. 1991 The theory of hurricanes. Annu. Rev. Fluid Mech. 23, 179–196.
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